NAME		
NAME		

Chapter 14 **Advanced Biotechnology Techniques**

1)	Explain	several t	he benefit:	s of knowin	g the DNA	A sequences	of humans	s and other
org	anisms.	What are	e some futi	ure potenti	al applica	tions of this	new geno	mic data?

2) How was DNA sequenced using the Sanger Method? Describe the recent improvements that have increased the efficiency of this process.

3) Complete the following paragraph:

The <u>Western Blot Technique</u> is very similar to the, except th	at
the protein-containing or suspected protein-containing samples are run on a	
If there are several proteins in a sample, they move down a lar	ıe
based on their Since they are colorless, they must be visualized. If	•
the gel is stained, all the proteins are visible. By transferring the bands to a membrane, th	e
membrane can be probed with an antibody that will recognize only the one	
in a mixture. In the Western blot, like an ELISA, the membrane must	-
be colorized. The antibody has an enzyme-reporter molecule, like	,
on it. When the substrate for HRP (TMB) is added, the HRP oxidizes the TMB, changing it	
from clear to blue. A blue band results where the antibody is attached. In both ELISAs and	d
Western blots,, but care must be taken to ensure that	t
the dilutions of the samples are made correctly. If not, smudges may result with no sampl	e
recognition.	

- 4) Proteomics is the study of how, when, and where proteins are used in cells. Tools of proteomics include protein crystallography and x-ray diffraction, mass spectrometry, NMR, and several assays, including ELISAs, Western blots, and protein arrays. *Provide a description of the following lab practices. Be certain to explain the reagents needed to perform the technique as well as the expected results.*
 - a. Northern Blot -

b. Southern Blot -

c. Western Blot -

d. ELISA -

5) Outline important applications of the growing biotechnology fields of pharmacogenetics, environmental and marine biotechnology, and bioterrorism/biodefense.